
Operating Systems

Socket Programming

Fall 2020





Goal

Backbone



Goal

Backbone

Process Process

?



Goal

Process Process
?



Solution

We need something to establish a connection between processes.

What is this connection? 

Inter-Process Communication 

One way is: using Sockets



History

Berkley Sockets

• Released on 4.2BSD Unix OS in 1983.

• Programming Interface

• All Modern OS implemented a version of Berkeley Socket interface.

• It became the standard interface for the applications running on internet.

• Written in C, other programming languages using a wrapper library on C APIs.



Berkley Sockets

Known as Sockets

It is an abstraction through which an application may send and receive data.

Standard API for networking



Addressing

Process 1

Machine 1

Process 2

Process 3

Backbone



Addressing

Process 1

Machine 1

Process 2

Process 3

Backbone

ADDRESS

a.b.c.d

192.168.1.3

• IP



Addressing

Process 1

Machine 1

Process 2

Process 3

Backbone

ADDRESS

a.b.c.d

192.168.1.3

PORT

8090

• PORT (0 to 65535)

• end-to-end transport



UDP vs. TCP

User Datagram Protocol

• connectionless

• out of order

• no care about if packet received or not!

• no retransmissions

Transmission Control Protocol

• reliable byte-stream channel (in-order, all arrive, no duplicate)

• flow control

• connection-oriented

• bidirectional



Addressing

Application

Machine 1

• ROUTER

TCP

Socket

IP

ROUTER

IP

Application

Machine 2

TCP

Socket

IP



Primitives

Primitive Description

Socket Creates a new communication end point with certain type.

Bind Attaches a local address socket.

Listen Announces the willingness to accept connections. 

Accept Waits for a connection and accepts if one arrives.

Connect Attempts to establish connection.

Send Sends some data over the connection.

Receive Receive some data over the connection.

Close Releases the connection.



socket

• creates an endpoint and returns a file descriptor for the socket

• three arguments:

• domain -> protocol family i.e. IP4, IP6 

• AF_INET IPv4

• AF_INET IPv6

• AF_UNIX local socket

• type

• SOCK_STREAM

• SOCK_DGRAM

• protocol -> explicitly specifies the protocols, if 0 passed then domain protocol will be used.



bind

• relate a socket with an address

• three arguments:

• sockfd -> file descriptor of the socket

• my_addr -> a pointer to sockaddr structure representing the address

• addrlen -> a field of type socklen_t specifies the size of sockaddr



listen

• prepares socket for incoming connections.

• two arguments:

• sockfd -> file descriptor of the socket

• backlog -> an integer value representing the number of pending connections at any one time.



accept

• used in stream-oriented sockets. 

• it creates a new socket for each new connection that arrive to host.

• returns new socket descriptor for arrival connection.

• three arguments:

• sockfd -> file descriptor of the socket

• cliaddr -> a pointer to a sockaddr structure to receive the client's address information.

• addrlen -> a pointer to a socklen_t location that specifies the size of the client address 

structure passed to accept().



connect

• establishes a direct communication link to a remote host.

• three arguments:

• sockfd -> file descriptor of the socket.

• sockaddr -> a pointer to a sockaddr structure to receive the host’s address information.

• addrlen -> a pointer to a socklen_t location that specifies the size of the host address 

structure passed to connect().



Client-Server Model - TCP

Server Client

socket()

bind()

listen()

accept()

recv()

send()

close()

socket()

connect()

send()

recv()

close()

Link 

Establishment



Client-Server Model - UDP

Server Client

socket()

bind()

recvfrom()

send()

close()

socket()

sendto()

recvfrom()

close()



Let’s see examples

go to our repository… 

if already cloned before, just git pull now.

https://github.com/os-course/iustfall20/tree/master/08_socket_example

https://github.com/os-course/iustfall20/tree/master/08_socket_example


Questions?

?


