
Operating Systems

Inter-Process Communication

Fall 2020





fork and exec

parent

pid: 10

fork()

execvp(some parameters)

exit() or return

child

pid: 11

another proc

pid: 11

parent

pid: 10

wait()

parent

pid: 10

exit() or return



Process and Multi-Thread

Code Data
File 

Descriptor

Registers
PC 

(in Xv6: eip)
Stack

thread

Code Data
File 

Descriptor

Registers

PC 
(in Xv6: eip)

Stack

Registers

PC 
(in Xv6: eip)

Stack

Registers

PC 
(in Xv6: eip)

Stack

thread thread thread



Communication between threads

The code segment is shared between threads.

We can define shared variables. 

All threads may access them.

The programmer should control the concurrent accesses using mutual exclusions.



How processes Communicate with each other?

Inter-Process Communication (IPC) mechanism makes it possible for processes 

share data together.

Why?

• Information Sharing

• Computation Speed up

• Modularity



Web browser example

each tab represents a process



Web browser example

interactive elements within a 

tab could be a thread



Fundamental Models

• Shared Memory • Message Passing

Process 1

Process 2

shared memory

Kernel

Process 1

Process 2

message queue

Kernel

m0 m1 m2 … mn-2 mn-1 mn



Shared Memory

• Creates a region.

• This region typically resides in the address space of creator process.

• Other processes attach this segment into their address space.

• OS prevents two processes from accessing each other’s address space.

• Data exchange is not under OS control. The processes are responsible for ensuring 

that they are not writing data simultaneously on the same location.



Shared Memory - POSIX API

• Producer

• create file descriptor of shared memory object: 

• fd = shm_open(name, flag, mode)

• truncate the file to the given size: 

• ftruncate(fd, size)

• map the FD to the memory of process

• ptr = mmap(addr, size, prot, flag, FD, 

offset)

• write the data on the memory

• sprintf(ptr, data)

• Consumer

• open the already created file by its name

• fd = shm_open(name, flag, mode)

• map the FD to the memory of process

• ptr = mmap(addr, size, prot, flag, FD, 

offset)

• read the data from the memory

• printf(“%s\n”, ptr)

• close the link

• shm_unlink(name)

example: https://github.com/os-course/iustfall20/blob/master/07_inter-

process_communication/shared_mem_shm_open.c

https://github.com/os-course/iustfall20/blob/master/07_inter-process_communication/shared_mem_shm_open.c


Message Passing

• OS intervenes in providing a mechanism for IPC.

• Two simple APIs.

• Send

• Receive

• We should consider three features/methods for such a mechanism:

• Direct or Indirect Communication

• direct send/recv or mailbox

• Synchronous or Asynchronous Communication

• blocking and non-blocking send/recv

• Buffering

• zero, bounded, and unbounded capacity



Message Passing – PIPE API

pipe

parent child

fd[0]

fd[1]

fd[0]

fd[1]



Shared Memory - POSIX API

• Define variables

• int fd[2];

• char buff[80];

• Initialize pipe

• pipe(fd);

• Write to and Read from pipe file descriptor

• write(fd[1], “string”, strlen(“string”) + 1);

• read(fd[0], buff, sizeof(buff));

example: https://github.com/os-course/iustfall20/blob/master/07_inter-

process_communication/msg_pass_pipe.c

https://github.com/os-course/iustfall20/blob/master/07_inter-process_communication/msg_pass_pipe.c


Questions?

?


