
Operating Systems

Process and OS

Fall 2020

Groups

• To Students whom were absent in meeting:

• I am available at 13 to 14 today. The link will be shared in the group.

• Please join and then we can meet!

Quiz

• Quiz is after class.

• 11:50 to 12:30.

• 10 minutes time to answer.

So far …

Process: an Abstraction

• Informally, a running program.

• Is a lifeless thing: a bunch of instructions (maybe data) on the disk

• Waiting to be brought into action.

• Ready, Running, Waiting.

OS

• Load instruction and data segments of executable file into memory

• Create stack and heap

• Transfer control to program

• Provide services to program

• While protecting everything

Heap vs. Stack

• Will be discussed in Memory Management session.

#include <stdio.h>

double multiplyByTwo (double input) {

double twice = input * 2.0;

return twice;

}

int main (int argc, char *argv[])

{

int age = 30;

double salary = 12345.67;

double myList[3] = {1.2, 2.3, 3.4};

printf("double your salary is %.3f\n",

multiplyByTwo(salary));

return 0;

}

Heap vs. Stack

#include <stdio.h>

double multiplyByTwo (double input) {

double twice = input * 2.0;

return twice;

}

int main (int argc, char *argv[])

{

int age = 30;

double salary = 12345.67;

double myList[3] = {1.2, 2.3, 3.4};

printf("double your salary is %.3f\n",

multiplyByTwo(salary));

return 0;

}

Heap vs. Stack

#include <stdio.h>

#include <stdlib.h>

double *multiplyByTwo (double *input) {

double *twice = malloc(sizeof(double));

*twice = *input * 2.0;

return twice;

}

int main (int argc, char *argv[])

{

int *age = malloc(sizeof(int));

*age = 30;

double *salary = malloc(sizeof(double));

*salary = 12345.67;

double *myList = malloc(3 * sizeof(double));

myList[0] = 1.2;

myList[1] = 2.3;

myList[2] = 3.4;

double *twiceSalary = multiplyByTwo(salary);

printf("double your salary is %.3f\n", *twiceSalary);

free(age);

free(salary);

free(myList);

free(twiceSalary);

return 0;

}

Heap vs. Stack

#include <stdio.h>

#include <stdlib.h>

double *multiplyByTwo (double *input) {

double *twice = malloc(sizeof(double));

*twice = *input * 2.0;

return twice;

}

int main (int argc, char *argv[])

{

int *age = malloc(sizeof(int));

*age = 30;

double *salary = malloc(sizeof(double));

*salary = 12345.67;

double *myList = malloc(3 * sizeof(double));

myList[0] = 1.2;

myList[1] = 2.3;

myList[2] = 3.4;

double *twiceSalary = multiplyByTwo(salary);

printf("double your salary is %.3f\n", *twiceSalary);

free(age);

free(salary);

free(myList);

free(twiceSalary);

return 0;

}

Heap vs. Stack

Stack

• don't have to explicitly de-allocate variables

• space is managed efficiently by CPU, memory will not

become fragmented

• local variables only

• limit on stack size (OS-dependent)

• variables cannot be resized

Heap

• variables can be accessed globally

• no limit on memory size

• no guaranteed efficient use of space, memory may become

fragmented over time as blocks of memory are allocated,

then freed

• you must manage memory (you're in charge of allocating

and freeing variables)

• variables can be resized using realloc()

Run Program: 1

Run Program: 2 Fetch/Decode/Execute

Run Program: 3 Steps

• Execution sequence:

• Fetch Instruction at PC

• Decode

• Execute (possibly using registers)

• Write results to registers/mem

• PC = Next Instruction(PC)

• Repeat

Context-Switching

OS

Proc

1

Proc

2

Proc

n…

Stack

Heap

Static Data

Code

Stack

Heap

Static Data

Code

Stack

Heap

Static Data

Code

Illusion of Multiple Processors

• Assume a single processor. How do we provide the illusion of multiple processors?

• Multiplex in time!

• Each virtual “CPU” needs a structure to hold:

• Program Counter (PC), Stack Pointer (SP)

• Registers (Integer, Floating point, others…?)

• How switch from one virtual CPU to the next?

• Save PC, SP, and registers in current state block

• Load PC, SP, and registers from new state block

• What triggers switch?

• Timer, voluntary yield, I/O, other things

Illusion of Multiple Processors

vCPU

1

Shared Memory

vCPU

2

vCPU

3

vCPU 1 vCPU 2 vCPU 3 vCPU 1 vCPU 2 vCPU 1

Time

State Transitions

ReadyRunning

Blocked

De-scheduled

Scheduled

I/O: DoneI/O: Initiate

• Running: A process is running on a processor. It is

executing the instructions.

• Ready: A process is ready to run but for some reason

OS has chosen not to run it in this moment.

• Blocked: A process has requested some kind of

operations (e.g. I/O) that makes it not ready to run

until some other events take place.

Process Structure

Process struct in Xv6

It is Unique for each proc

Process API

• Create

• Destroy

• Wait

• Other controls

• Status

How to create?

INIT

INIT Login

INIT SSH GUI

INIT
Remote

Console
Desktop Browser

Fork!

• Fork is a system-call for creating new process.

• Exact copy of current process with different PID.

• Returns an integer:

• > 0: running in the context of (original process) parent.

• = 0: running in the context of (new process) child.

• < 0: Error! running in the context of original process.

Fork!

Fork and Wait

Fork and Wait and Exec

Process Management

• ps aux | grep process_name

• ps -p process_id

• pstree // list tree view of processes

• ls -la /proc/3956/

Process Management

• top

Updates frequently the information of running processes.

Poor Processes

Zombie

Orphan

Orphan

• A process whose parent process no more exists Fetch Instruction at PC

• Either finished or terminated without waiting for its child

• The orphan process is soon adopted by init process, once its parent process dies.

Orphan

#include <stdio.h>

#include <sys/types.h>

#include <unistd.h>

int main()

{

// Create a child process

int pid = fork();

if (pid > 0)

printf("in parent process");

// Note that pid is 0 in child process

// and negative if fork() fails

else if (pid == 0)

{

sleep(30);

printf("in child process");

}

return 0;

}

Zombie

• When a process ends, all of the memory and resources associated with it are deallocated so they can be used

by other processes.

• However, the process's entry in the process table remains.

• The zombie processes can be removed from the system by sending the SIGCHLD signal to the parent, using

the kill command. If the zombie process is still not eliminated from the process table by the parent process,

then the parent process is terminated if that is acceptable.

• The zombie's process ID and entry in the process table can then be reused.

• However, if a parent ignores the SIGCHLD, the zombie will be left in the process table.

Zombie

// A C program to demonstrate Zombie Process.

// Child becomes Zombie as parent is sleeping

// when child process exits.

#include <stdlib.h>

#include <sys/types.h>

#include <unistd.h>

int main()

{

// Fork returns process id

// in parent process

pid_t child_pid = fork();

// Parent process

if (child_pid > 0)

sleep(50);

// Child process

else

exit(0);

return 0;

}

What does a zombie look like?

•normal (no zombie)

$ ps

PID TTY TIME CMD

1074 pts/2 00:00:00 bash

1280 pts/2 00:00:00 parentTest.exe

1281 pts/2 00:00:00 childTest.exe

1283 pts/2 00:00:00 ps

•abnormal (zombie)

$ ps

PID TTY TIME CMD

1074 pts/2 00:00:00 bash

1280 pts/2 00:00:00 parentTest.exe

1281 pts/2 00:00:00 childTest.exe <defunct>

1288 pts/2 00:00:00 ps

What does a zombie look like?

$ ps -l

F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD

000 S 561 1074 1073 0 76 0 - 628 11a418 pts/2 00:00:00 bash

000 S 561 1301 1074 0 70 0 - 436 11f22b pts/2 00:00:00 parentTes

004 Z 561 1302 1301 0 70 0 - 0 119ffb pts/2 00:00:00 childTest

000 R 561 1320 1074 0 77 0 - 646 - pts/2 00:00:00 ps

Questions?

?

