
Operating Systems

Shell and BashScript

Fall 2020

Groups Collaboration

• Set a day for the online meeting

• At the weekend

• a 10-minute discussion for each group on skype

So far …

How a computer starts up?

What is the bootloader role!

What is assembly-level of coding in bootloader!

How to write program in C?

Pointers!

Expectation

What should happen after computer boots up and OS is loaded?

User Interfaces

• Command Line Interface (CLI)

• Graphical User Interface (GUI)

• Menu Driven

• Form Based

• Natural Language

• Gesture Driven

The choice?

Flash-back

OS provides

• mechanisms for users to satisfies their

requirements,

• besides its ability to manage the resources

and prioritize the processes.

Kernel

A computer program

Controls everything in the system

Facilitates the interaction between hardware and software

Kernel

Applications

CPU Memory Devices

API

• Application Programming Interface

• Interacts between multiple software intermediaries

• Calls and Requests

• Some level of abstractions

Commands System Call

Shell

What is shell?

It is called shell because it is the outermost layer around the OS kernel.

Bash

• Bash is a Unix Shell.

• Command-line Language

• It can be executed from script files (bash script)

• chmod +x script.sh

Like programming Languages …

Bash has:

• Variables

• Arguments

• Array

• Operator

• If … else …

• Loop

• Pipelines

• Regex

• ...

Hello World!

Every Bash Script should start with

#!/bin/bash

Comments in Bash Script starts with #

A simple HelloWorld!

#!/bin/bash

echo “Hello World!”

>> Hello World!

Variables

• Define Variables

• name=”Vahid”

• notice that there is no space among variable name and equal sign and its value!

• std_no=94521207

• Using variables with $ before the name

name=“Vahid”

std_no=94521207

echo Name: ${name}, ID: $std_no

>> Name: Vahid, 94521207

echo Name: name , ID: std_no

>> Name: name , ID: std_no

Arrays

my_array=(apple banana "Fruit Basket" orange)

echo ${#my_array[@]} # 4

echo ${my_array[@]} #(apple banana "Fruit Basket" orange)

my_array[4]="carrot"

echo ${#my_array[@]} # 5

echo ${my_array[${#my_array[@]}-1]} # carrot

Operators

• a + b addition (a plus b)

• a - b subtraction (a minus b)

• a * b multiplication (a times b)

• a / b division (integer) (a divided by b)

• a % b modulo (the integer remainder of a divided by b)

• a ** b exponentiation (a to the power of b)

if … elif … else ...

NAME="George"

if ["$NAME" = "John"]; then

echo "John Lennon"

elif ["$NAME" = "George"]; then

echo "George Harrison"

else

echo "This leaves us with Paul and Ringo"

fi

if … elif … else ...

• for numeric comparison

• comparison Evaluated to true when

$a -lt $b $a < $b

$a -gt $b $a > $b

$a -le $b $a <= $b

$a -ge $b $a >= $b

$a -eq $b $a is equal to $b

$a -ne $b $a is not equal to $b

• for string comparison

• comparison Evaluated to true when

"$a" = "$b" $a is the same as $b

"$a" == "$b" $a is the same as $b

"$a" != "$b" $a is different from $b

-z "$a" $a is empty

Switch Case

mycase=1

case $mycase in

1) echo "You selected bash";;

2) echo "You selected perl";;

3) echo "You selected python";;

4) echo "You selected c++";;

5) exit

esac

Loops

NAMES=(Joe Jenny Sara Tony)

for N in ${NAMES[@]} ; do

echo "My name is $N”

done

for f in $(ls prog.sh /etc/localtime) ; do

echo "File is: $f“

done

Loops

COUNT=4

while [$COUNT -gt 0]; do

echo "Value of count is: $COUNT“

COUNT=$(($COUNT - 1))

done

Functions

function function_B {

echo "Function B."

}

function function_A {

echo "$1"

}

function adder {

echo "$(($1 + $2))"

}

function_A "Hello!" # Hello!

function_B # Function B.

Pass two parameters to function adder

adder 12 56 # 68

Special Variables

• $0 - The filename of the current script.

• $n - The Nth argument passed to script was invoked or function was called.

• $# - The number of argument passed to script or function.

• $@ - All arguments passed to script or function.

• $* - All arguments passed to script or function.

• $? - The exit status of the last command executed.

• $$ - The process ID of the current shell. For shell scripts, this is the process ID under which they

are executing.

• $! - The process number of the last background command.

Pipelines

command1 | command2 | command3 | …

#!/bin/bash

cat /proc/cpuinfo | grep processor | wc -l

man

• man command

• shows documentation about the command

• its description

• its arguments

• its flags

Class Assignment

Write a bash script with 3 functions and it takes your birthdate (day, month, year) and weekday of

birth as inputs which:

The first function should validate the weekday of birth is True or not.

The second function should calculate the number of passed days after your birthday if less than 6

months is passed; otherwise, the number of remaining days to your birthday.

The third function should calculate the days' difference between your birthdate and any other date.

Questions?

?

