
Operating Systems

Quick Introduction to C Programming Language

Fall 2020

Quick Introduction to C Programming Language

Agenda

 Brief History

 Structure of a C Program

 Data Types

 Operators

 Array

 Flow Control

3

Brief History of C Programming Language

Quick Introduction to C Programming Language

History

• The C programming language was devised in the early 1970s as a system

implementation language for the nascent Unix operating system.

• The C programming language was created with the purpose of writing

an operating system with a high level language.

5

Quick Introduction to C Programming Language

History

• The C programming language was devised in the early 1970s as a system

implementation language for the nascent Unix operating system.

• The C programming language was created with the purpose of writing

an operating system with a high level language.

6

Quick Introduction to C Programming Language

History

 C was influenced by B programming language.

 B programming language was the developed
by Ken Thompson

Code written in B

Ken Thompson

7

Quick Introduction to C Programming Language

History: PDP-7

 Unix was developed for PDP-7 written in assembly by Ritchie and
Thompson.

8

Quick Introduction to C Programming Language

History: PDP-11

 Ritchie and Thompson decided to port

UNIX on PDP-11

 UNIX for PDP-11 was also developed in

assembly

 There was need for a programming

language for developing utilities on the

new platform

9

Quick Introduction to C Programming Language

History: PDP-11

 Try to implement Fortran compiler

 Try to use BCPL which resulted in B

 B was slow and not taking advantage

of hardware capabilities.

 Dennis Ritchie created C (1972)

10

Quick Introduction to C Programming Language

History

• Unix v2, had C compiler and related utility

• Unix v4 was re-implemented with C.

• Unix was one of the first operating system kernels to be implemented in

a language other than assembly.

11

Quick Introduction to C Programming Language

History: CD&K

Brian W. Kernighan

1942 – present

Known for:
Unix

AWK

Kernighan–Lin algorithm

The C programming
book

Dennis Ritchie

1941 – 2011

Known for:
ALTRAN

B

BCPL

C

Multics
Unix

 12

Quick Introduction to C Programming Language

History

• During 1970 and 1980 versions of C was implemented for different types

of computers so there was a need for a standard definition.

• Since then ANSI and then ISO have voted on different C standards

including: C89, C99, C11, C18

13

Compiled or Interpreted

Structure of a C Program

Quick Introduction to C Programming Language

Structure of a C Program

/* adding standard input output header file to the
 * source code.
 * */
#include <stdio.h>
int main(int argc, char *argv[])
{
 // defining some variables
 int a;
 int b, c;
 a = 10;
 b = 20;
 c = a + b;

 // writing to stdout
 printf("hello world\n");
 printf("a + b = %d\n", c);

 return 0;
}

16

Quick Introduction to C Programming Language

Structure of a C Program

/* adding standard input output header file to the
 * source code.
 * */
#include <stdio.h>
int main(int argc, char *argv[])
{
 // defining some variables
 int a;
 int b, c;
 a = 10;
 b = 20;
 c = a + b;

 // writing to stdout
 printf("hello world\n");
 printf("a + b = %d\n", c);

 return 0;
}

Commenting, multiline and single line

17

Quick Introduction to C Programming Language

Structure of a C Program

/* adding standard input output header file to the
 * source code.
 * */
#include <stdio.h>
int main(int argc, char *argv[])
{
 // defining some variables
 int a;
 int b, c;
 a = 10;
 b = 20;
 c = a + b;

 // writing to stdout
 printf("hello world\n");
 printf("a + b = %d\n", c);

 return 0;
}

Adding header file to the source code.

#include <….> // search in the systems directories

#include “……” // can have relative path

(more on the topic of header file in future.)

18

Quick Introduction to C Programming Language

Structure of a C Program

/* adding standard input output header file to the
 * source code.
 * */
#include <stdio.h>
int main(int argc, char *argv[])
{
 // defining some variables
 int a;
 int b, c;
 a = 10;
 b = 20;
 c = a + b;

 // writing to stdout
 printf("hello world\n");
 printf("a + b = %d\n", c);

 return 0;
}

By convention the program starts from the main

function.

The main function can have two variables

Int argc and char *argv[].

With help of these variable you can access the

parameters passed to the program with they are

called.

19

Quick Introduction to C Programming Language

Structure of a C Program

/* adding standard input output header file to the
 * source code.
 * */
#include <stdio.h>
int main(int argc, char *argv[])
{
 // defining some variables
 int a;
 int b, c;
 a = 10;
 b = 20;
 c = a + b;

 // writing to stdout
 printf("hello world\n");
 printf("a + b = %d\n", c);

 return 0;
}

A block of code is defined by { } in the C

programming language.

This block determines the scope of

function, variables and other statements.

20

Quick Introduction to C Programming Language

Structure of a C Program

/* adding standard input output header file to the
 * source code.
 * */
#include <stdio.h>
int main(int argc, char *argv[])
{
 // defining some variables
 int a;
 int b, c;
 a = 10;
 b = 20;
 c = a + b;

 // writing to stdout
 printf("hello world\n");
 printf("a + b = %d\n", c);

 return 0;
}

Variable definition

<type> <variable name> [,<variable name>];

21

Data Types

Quick Introduction to C Programming Language

Data Types

Name Size (bytes)

[unsigned] char 1

[unsigned] short 2

[unsigned] int 4

[unsigned] long 8

[unsigned] long long 8

[unsigned] float 4

[unsigned] double 8

 Size of data types may vary depending

on compiler and its configurations.

 No boolean type but:

 #include <stdboo.h>

 defines bool, true, and false.

23

Quick Introduction to C Programming Language

Data Types

• Notice, in <stdint.h> there are some useful type definitions.

 int8_t, int16_t, int32_t, int64_t

 uint8_t, uint16_t, uint32_t, uin64_t

 Link: https://www.gnu.org/software/libc/manual/html_node/Integers.html

24

https://www.gnu.org/software/libc/manual/html_node/Integers.html

Quick Introduction to C Programming Language

Data Types

bit: 3 2 1 0

 [0][0][0][0] = 0

 [0][0][0][1] = 1

 [0][0][1][0] = 2

 [0][0][1][1] = 3

 [0][1][0][0] = 4

 .
 .
 .
 [0][1][1][1] = 7

 [1][0][0][0] = -8

 [1][0][0][1] = -7

 [1][0][1][0] = -6

 [1][0][1][1] = -5

 [1][1][0][0] = -4

 .
 .
 .

bit: 3 2 1 0

 [0][0][0][0] = 0

 [0][0][0][1] = 1

 [0][0][1][0] = 2

 [0][0][1][1] = 3

 [0][1][0][0] = 4

 .
 .
 .
 [0][1][1][1] = 7

 [1][0][0][0] = 8

 [1][0][0][1] = 9

 [1][0][1][0] = 10

 [1][0][1][1] = 11

 [1][1][0][0] = 12

 .
 .
 .

Signed Unsigned

25

Quick Introduction to C Programming Language

Operators

26

Quick Introduction to C Programming Language

Operators

Type Operators

Arithmetic *, /, +, -, %, ++, --

Relational ==, !=, >, <, >=, <=

Logical &&, ||, !

Bitwise &, |, ^, ~, <<, >>

Assign =, <arithmetic op>=, <bitwise op>=

Others sizeof(), &, *, (condition) ? <value> : <value>

 Sizeof returns the number of bytes a data type requires.

27

Array

Quick Introduction to C Programming Language

Array

#include <stdio.h>

int main(int argc, char *argv[])

{

 int values[] = {1,2,3,4};

 // int values[10] = {1,2,3,4}; // what is the difference?

 printf(“values[2]: %d\n”, values[2]);

 Int arr2d[4][5] = {

 {1,2,3,4},

 {5,6,7,8},

 {9,0,1,2}

 };

 return 0;

}

You can access values in the array by

using its index counting from 0.

Initialization will start from index 0 and

assigns values.

Unspecified indexes are set to 0.

29

Quick Introduction to C Programming Language

Array

 Sizeof an array variable evaluates to the amount of memory array has

acquired.

30

Quick Introduction to C Programming Language

Array: Declaring an Array

{

int i, j, intArray[10], number;
float floatArray[1000];
int tableArray[3][5]; /* 3 rows by 5 columns */

const int NROWS = 100;
const int NCOLS = 200;
float matrix[NROWS][NCOLS];

}

31

Quick Introduction to C Programming Language

Array: Initializing Array

{
 int i = 5, intArray[6] = { 1, 2, 3, 4, 5, 6 }, k;
 float sum = 0.0f,
 floatArray[100] = { 1.0f, 5.0f, 20.0f };
 double piFractions[] = {3.141592654,
 1.570796327, 0.785398163};

 int numbers[100] = {1, 2, 3, [10] = 10, 11, 12,
 [60] = 50, [42] = 420 };
};

32

Quick Introduction to C Programming Language

Array

int arr[count];

33

0 sizeof(int) x count

arr

Quick Introduction to C Programming Language

Array

int arr[count];

34

0 sizeof(int) x count

arr

arr + 1 arr + 2 arr + n …

Quick Introduction to C Programming Language

Array: 2d Array memory layout

char mat[row][col]; // row = 3, col = 5

35

0 row x col

Quick Introduction to C Programming Language

Array: 2d Array memory layout

char mat[row][col]; // row = 3, col = 5

36

col 0 2 x col row x col

Quick Introduction to C Programming Language

Array: 2d Array memory layout

char mat[row][col]; // row = 3, col = 5

37

col

0

2 x col

row x col

col

2 x col

Quick Introduction to C Programming Language

Array: 2d Array memory layout

char mat[row][col]; // row = 3, col = 5

38

row 0: 0x…020 0x…021 0x…022 0x…023 0x…024
row 1: 0x…025 0x…026 0x…027 0x…028 0x…029
row 2: 0x…02a 0x…02b 0x…02c 0x…02d 0x…02e

Flow Control

Quick Introduction to C Programming Language

Flow Control: If Statements

#include <stdio.h>
int main(int argc, char *argv[])
{
 int temperature;
 scanf(“%d\n”, &temperature);
 if (temperature < 23) {
 turn_on_heater();
 } else if (temperature < 26) {
 turn_off_heater();
 turn_off_cooler();
 } else if (temperature < 40) {
 if (is_heater_enable()) {
 turn_off_heater();
 }
 turn_on_cooler();
 }
 return 0;
}

40

Quick Introduction to C Programming Language

Flow Control: While Statements

#include <stdio.h>
#include <string.h>

int main(int argc, char *argv[])
{
 unsigned char condition = 1;
 char cmd[32];
 while (condition) {
 fgets(cmd, 32, stdin);
 if (strcmp(cmd, "quit\n") == 0) {
 condition = 0;
 }
 /* execute the command and perform
 * related operations.
 * ...
 */
 }
 return 0;
}

41

Quick Introduction to C Programming Language

Flow Control: Do-While Statements

#include <stdio.h>
#include <string.h>

int main(int argc, char *argv[])
{
 unsigned char condition = 1;
 do {
 /* do operations and related logic
 * ...
 */
 } while (condition);
 return 0;
}

42

Quick Introduction to C Programming Language

Flow Control: For loop

#include <stdio.h>

int main(int argc, char *argv[])
{
 int count = 8;

 for (int i = 0; i < count; i++) {
 // ...
 }
 return 0;
}

43

Quick Introduction to C Programming Language

Flow Control: For loop equivalent While loop

#include <stdio.h>

int main(int argc, char *argv[])
{
 /*for (int i = 0; i < count; i++) {

 }*/

 int count = 8;
 int i = 0;
 while (i < count) {
 // …
 // last instruction
 i++;
 }
 return 0;
}

 44

Quick Introduction to C Programming Language

Flow Control: For loop, Fibonacci Sequence

/* Program to calculate the first 20 Fibonacci numbers. */
#include <stdlib.h>
#include <stdio.h>

int main(void)
{
 int i, fibonacci[20];
 fibonacci[0] = 0; fibonacci[1] = 1;
 for(i = 2; i < 20; i++)
 fibonacci[i] = fibonacci[i - 2] + fibonacci[i - 1];
 for(i = 0; i < 20; i++)
 printf("Fibonacci[%d] = %f\n", i, fibonacci[i]);
}

45

Quick Introduction to C Programming Language

Flow Control: Break and Continue

#include <stdio.h>
int main(int argc, char *argv[]) {
 unsigned char condition = 1;
 int array[] = {5, 6, 2, 8, 12, 19, 20, 13};
 int count = 8;
 int key = 19;
 int index = -1;
 int count_odd = 0;
 for (int i = 0; i < count; i++) {
 if (array[i] == key) {
 index = i;
 break;
 }
 if (array[i] % 2 == 0)
 continue;
 count_odd++;
 }
 return 0;
}

46

Quick Introduction to C Programming Language

Flow Control: Switch-Case

#include <stdio.h>

int main(int argc, char *argv[])

{

 unsigned char condition = 1;

 switch (value) {

 case 1:

 // ….

 break;

 case 2:

 case 3:

 // ….

 break;

 default:

 //….

 }

 return 0;

}

47

Quick Introduction to C Programming Language

Questions?

?

48

