
Operating Systems

Boot your OS

Fall 2020

Groups Collaboration

• Are they determined?

• Pick a day for online meeting about 5 to 10 min for each group

• Deadline is next Tuesday

• Cheating in Exams and Quizzes!

Intro

We have all used an Operating System before.

Linux

Windows

OS X

Intro

Many years ago….

develop your OS from scratch to

start your research

solve a problem

programming

Now…

wonderful, beautiful machines above layers of codes!

Intro

Operating Systems at the heart of it all…

• Make the incredible advance in the underlying technology available to rapid evolving body of applications.

• Processing, Communications, Storages, Interaction, Protected sharing.

The key building blocks are

• Processes, Scheduling

• Concurrency, Coordination

• Address space, Translation

• Protection, Isolation, Sharing, Security

• Communication, Protocols

• Persistent storage, transactions, consistency

• Interfaces to all devices

Intro

Year 2019

2.5 billion android devices

1.9 billion IOS devices

2015

2018

What is an Operating System?

An illusionist!

Provides clean, easy to use abstraction of physical resources.

• Infinite memory, dedicated machine

• Higher level objects: files, users, message, and etc.

• Masking limitations, virtualization

Intro

• How a computer boots?

• How to write a low-level program on bare hardware where there is no OS yet?

• How to configure a CPU so that utilize its functionality?

• How to bootstrap code written in a higher-level language to make progress

towards our own OS?

Intro

Our goal is not to develop all functionality of OS!

We aim to introduce some low-level concepts and how early OS is written for now.

We will familiarize you to assembly language and machine codes.

BIOS

What happen when we turn on or reboot our computer?

How to load Data that are stored somewhere in permanent storage device.

e.g. USB, Hard-Disk, floppy!

At the start of the computer, the system offers little of services.

even there is no a simple file system!

BIOS

Hopefully, There is something!

Basic Input/Output Software known as BIOS.

• Is a collection of software routines that are initially loaded from a chip into memory and

initialized when a computer switched on.

• Provides auto-detection and basic control of the computer’s essential devices such as screen,

keyboard, hard disks.

• Completes some low-level tests of the hardware, particularly checks whether memory is

working or not.

• Can not simply load a file containing the Operating System. Has no idea!!

BIOS

BIOS reads specific sectors of data (usually 512 bytes in size).

The easiest place for BIOS to find OS is the first sector of hard disk. i.e. Cylinder 0, Head 0, Sector 0

Known as Boot Sector.

Note that CPU does not differentiate between data and code.

Both interpreted as instructions.

Hard Disk Schema

Boot Sector and Magic Number

At the end of boot sector (last two bytes) must be set to the magic number 0xaa55.

Size of boot sector? 512 bytes

• What is magic number?

• A magic number is a numeric or string constant that indicates the file type.

• More info at this url.

https://www.ibm.com/support/pages/what-magic-number#:~:text=ANSWER%3A%20A%20magic%20number%20is,that%20have%20a%20magic%20number.

An example

Using a binary text editor, such as TextPad or GHex, allows us to read/write raw

bytes to a file. Other editor convert characters into their ASCII values.

‘A’ -> 0x41

An actual machine code for boot sector

e9 fd ff 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

*

00 00 00 00 00 00 00 00 00 00 00 00 00 00 55 aa

An example

• The initial three bytes, in hexadecimal, are machine codes instructions to perform an endless jump.

• The last two bytes make up the magic number for boot sector. But why not in their order?!

• The rest of the file is filled by zero. Asterisk (* character) indicates the repetition of zeroes.

e9 fd ff 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

*

00 00 00 00 00 00 00 00 00 00 00 00 00 00 55 aa

Endianness

The order or sequence of bytes of a word of digital data in computer memory.

BE: stores the most-significant byte of a word at the smallest memory address and

least significant byte at the largest.

LE: stores least-significant byte at the smallest address.

Big-endian Little-endian

The data to store is 0xABCD (the binary is 1010 1011 1100 1101).

Endianness

1100 1101

1010 1011

0x12AD

0x12AC

0x12AB

….

….

1010 1011

1100 1101

0x12AD

0x12AC

0x12AB

….

….

1 byte1 byte

Virtual machine software and Emulators

We can boot an OS on

• Real hardware

• Using Virtual machine tools

• Virtual Box

• VMWare

• Emulators

• Boshs

• QEmu

Why Hexadecimal?

Easy to convert to binary and 4-bit segments

Shorter than decimal

Easy to convert binary to Hex

1110001001001011 1110001001001011

1110 0010 0100 1011

8+4+2=14

1

2

8+2+1=11

E 2 4 B

2

8

64

512

32768

16384

57931

8192

4

Assembly

nasm is a compiler for assembly language.

$ nasm boot.asm –f bin –o boot.bin

• -f bin indicates that the nasm produce raw binary output file.

Boot Sector Again

; a simple boot sector assembly code

loop:

jmp loop

times 510 – ($ - $$) db 0

dw 0xaa55

Hello World!

Too fast!

Real mode and Protected mode

As the CPU technology and new generations of CPUs come to the market, what should happen to all

those codes written for old CPUs?

Simple solution: Emulates the oldest CPU in the family. So we can have backward compatibility.

Intel 8086 supports 16-bit instructions and had no notion of memory protection.

Because of backward compatibility, the CPU starts in 16-bit real mode.

In x86 family, we have 32-bit and 64-bit instructions.

After OS boots, it explicitly switches up to protected mode.

Interrupts

• Interrupts are a mechanism that allow a CPU temporarily to halt what it is doing and run some

other.

• Each interrupt is represented by unique number which is an index to interrupt vector.

• BIOS initialize the table at the start of memory containing a pointer to Interrupt Service Routines

(ISR).

For example: 0x10 causes screen related interrupts.

Registers

• Four general purpose registers

• ax, bx, cx, and dx

• Load a data

• mov ax, 1234 ; loads 1234 decimal number into ax

• mov bh, 0xab ; loads 0xab hex number into 8 most-significant bits of

bx

• mov cl, 0x10 ; loads 0x10 hex number into 8 least-significant bits

of cx

Using Screen (Monitor) by BIOS

• Interrupt 0x10 is screen-related interrupt.

• To write a value in the screen, ah should be set to 0x0e.

• It writes the value of al register onto the screen.

; an example for using interrupt

mov ah, 0x0e

mov al, ‘V’

int 0x10

Hello!

; Hello world!

mov ah, 0x0e

mov al, 'H'

int 0x10

mov al, 'e'

int 0x10

mov al, 'l'

int 0x10

mov al, 'l'

int 0x10

mov al, 'o'

int 0x10

jmp $

times 510 - ($ - $$) db 0

dw 0xaa55

Compile with nasm and open binary

• nasm hello.asm –f bin –o out.bin

• od –t x1 –A n out.bin

od displays a file into a given format.

b4 0e b0 48 cd 10 b0 65 cd 10 b0 6c cd 10 b0 6c

cd 10 b0 6f cd 10 eb fe 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

*

00 00 00 00 00 00 00 00 00 00 00 00 00 00 55 aa

Compile with nasm and open binary

• od –t x1 –A n out.bin

Running on Virtual Box

Memory

CPU always fetches and executes instructions from memory.

Our boot sector code is somewhere in memory. but where?

Memory

Interrupt Vector Table (1 KB)

BIOS Data Area (256 byte)

Free (638 KB)

Loaded boot sector (512 byte)

Extended bios data area

(639 KB)

Video Memory (128 KB)

0x0

FREE

BIOS (256 KB)

0x400

0x500

0x7c00

0x7e00

0x9fc00

0xA0000

0xC0000

0x100000

Memory layout after boot.

Load data from memory

; Hello world!

mov ah, 0x0e

mov al, x_char

int 0x10

mov al, [x_char]

int 0x10

mov bx, x_char

add bx, 0x7c00

mov al, [bx]

int 0x10

mov al, [0x7c1d]

int 0x10

jmp $

x_char:

db "X“

times 510 - ($ - $$) db 0

dw 0xaa55

Origin

; Hello world!

[org 0x7c00]

mov ah, 0x0e

mov al, x_char

int 0x10

mov al, [x_char]

int 0x10

mov bx, x_char

add bx, 0x7c00

mov al, [bx]

int 0x10

mov al, [0x7c1d]

int 0x10

jmp $

x_char:

db "X“

times 510 - ($ - $$) db 0

dw 0xaa55

ASCII-0

Problem: How to print a string?

start from the first address

then increase the address

until it reaches to ZERO

my_string:

db “Hello World!”, 0

Stack

Is stack something special and complicated thing?

Stack is simple solution to a CPU inconvenience:

The limited number of registers.

Two simple instructions: push and pop.

Two special registers: bp and sp.

Stack grows downwards.

0x8000

0x7FFE

0x7FFC

0x7FFA

bpsp

Stack

Is stack something special and complicated thing?

Stack is simple solution to a CPU inconvenience:

The limited number of registers.

Two simple instructions: push and pop.

Two special registers: bp and sp.

Stack grows downwards.

0000 0101

0x8000

0x7FFE

0x7FFC

0x7FFA

bp

; push

push ‘A’

sp

Stack

Is stack something special and complicated thing?

Stack is simple solution to a CPU inconvenience:

The limited number of registers.

Two simple instructions: push and pop.

Two special registers: bp and sp.

Stack grows downwards.

0000 0101

0000 0110

0x8000

0x7FFE

0x7FFC

0x7FFA

bp

; push

push ‘A’

push ‘B’

sp

Stack

Is stack something special and complicated thing?

Stack is simple solution to a CPU inconvenience:

The limited number of registers.

Two simple instructions: push and pop.

Two special registers: bp and sp.

Stack grows downwards.

0000 0101

0000 0110

0000 0111

0x8000

0x7FFE

0x7FFC

0x7FFA

bp

; push

push ‘A’

push ‘B’

push ‘C’

sp

Stack

; Stack

[org 0x7c00]

mov ah, 0x0e

mov bp, 0x8000

mov sp, bp

push 'A'

push 'B'

push 'C'

pop bx

mov al, bl

int 0x10

mov al, [0x7ffc]

int 0x10

jmp $

times 510 - ($ - $$) db 0

dw 0xaa55

output 1?

output 2?

Stack

• pusha

• popa

push all registers into stack and pop all registers back in their corresponding registers.

Compare and Jump

• cmp

compare a register to another register or immediate value.

• je target ; jump if equal (x == y)

• jne target ; jump if not equal (x != y)

• jl target ; jump if less than (x < y)

• jle target ; jump if less than or equal (x <= y)

• jg target ; jump if greater (x > y)

• jge target ; jump if greater or equal (x >= y)

Call functions

How can we go to an address and then return to the previous address of execution?

Using labels?

call and ret instructions.

Include

%include “name_of_file.asm”

Example: Printer function

; printer.asm

print_string:

mov ah, 0x0e

start1:

mov al, [bx]

cmp al, 0x0

je end1

int 0x10

inc bx

jmp start1

end1:

ret

; main.asm

[org 0x7c00]

; init stack

mov bp, 0x800

mov sp, bp

mov bx, boot_msg

call print_string

jmp $

%include "printer.asm"

boot_msg:

db "Booting loader", 0

times 510 - ($-$$) db 0

dw 0xaa55

Questions?

?

