
Introduction to
Inter-Process Communication

Zombie and Orphan processes

Orphan Process

● A process whose parent process no more exists Fetch

Instruction at PC

● either finished or terminated without waiting for its

child

● the orphan process is soon adopted by init process,

once its parent process dies.

Orphan Process

#include<stdio.h>
#include <sys/types.h>
#include <unistd.h>

int main()
{
 // Create a child process
 int pid = fork();

 if (pid > 0)
 printf("in parent process");

 // Note that pid is 0 in child process
 // and negative if fork() fails
 else if (pid == 0)
 {
 sleep(30);
 printf("in child process");
 }

 return 0;
}

Zombie Process

● When a process ends, all of the memory and resources
associated with it are deallocated so they can be used
by other processes.

Zombie Process

● However, the process's entry in the process table remains.

● The parent is sent a SIGCHLD signal indicating that a child has died; the

handler for this signal will typically execute the wait system call, which

reads the exit status and removes the zombie.

● The zombie's process ID and entry in the process table can then be

reused.

● However, if a parent ignores the SIGCHLD, the zombie will be left in the

process table.

Zombie Process

// A C program to demonstrate Zombie Process.
// Child becomes Zombie as parent is sleeping
// when child process exits.
#include <stdlib.h>
#include <sys/types.h>
#include <unistd.h>
int main()
{
 // Fork returns process id
 // in parent process
 pid_t child_pid = fork();

 // Parent process
 if (child_pid > 0)
 sleep(50);

 // Child process
 else
 exit(0);

 return 0;
}

What does a zombie look like?

● normal (no zombie)

$ ps

PID TTY TIME CMD
1074 pts/2 00:00:00 bash
1280 pts/2 00:00:00 parentTest.exe
1281 pts/2 00:00:00 childTest.exe
1283 pts/2 00:00:00 ps

What does a zombie look like?

● abnormal (zombie)

$ ps

PID TTY TIME CMD
1074 pts/2 00:00:00 bash
1280 pts/2 00:00:00 parentTest.exe
1281 pts/2 00:00:00 childTest.exe <defunct>
1288 pts/2 00:00:00 ps

What does a zombie look like?

$ ps -l

Warning: /boot/System.map has an incorrect kernel version.

 F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD

000 S 561 1074 1073 0 76 0 - 628 11a418 pts/2 00:00:00 bash

000 S 561 1301 1074 0 70 0 - 436 11f22b pts/2 00:00:00 parentTes

004 Z 561 1302 1301 0 70 0 - 0 119ffb pts/2 00:00:00 childTest

000 R 561 1320 1074 0 77 0 - 646 - pts/2 00:00:00 ps

Inter-Process Communication

Inter-Process Communication

Inter-Process Communication

● Shared Memory
● Pipe

Shared Memory

● Processes share same physical pages of memory

● Communication == copy data to memory Efficient;

● Data transfer: user space ==> kernel ⇒ user space

● Shared memory: single copy in user space

Shared Memory

● Processes share same
● Physical pages of memory

mmap() syscall

● addr = mmap(daddr, len, prot, flags, fd, offset);
● daddr – choose where to place mapping; Best to use

NULL, to let kernel choose
● len – size of mapping
● prot – memory protections (read, write, exec)
● flags – control behavior of call: MAP_SHARED,

MAP_ANONYMOUS
● fd – file descriptor for file mappings
● offset – starting offset for mapping from file
● addr – returns address used for mapping

Pipe

● standard output from one process becomes the standard input

of the other process

● Pipe == byte stream buffer in kernel

● Pipe is one-way communication only

● It opens a pipe, which is an area of main memory that is treated

as a “virtual file”.

Pipe

● Step 1 − Create pipe1 for the parent process

● Step 2 − Create pipe2 for the child process

● Step 3 − Close the unwanted ends

● Step 4 − Parent process to write a message and child process to

read

● Step 5 − Child process to write a message and parent process

to read

