nnnnnnnnnnnnnnnnnnnnnnnnnnn

Introduction to
Process

Booting an Operating System Kernel

Physical
Memory
(1)
BIOS copies BIOS
Disk bootloader
prreeae e »| Bootloader
Q) instructions
(2) and data
Bootloader -.......... Bodtoaides
OS kernel SIETRPIR. ST . copies 05 kemel
Lisansrssnnmasanasnasisanemeisasdenasen 0S kernel
Login F2]0] o JECS, I— ; instructions
(j (3) | and data
0S kernel copies
login application
---»| Login app
instructions
and data

Memory Layout of C Programs

$ gcc memory-layout.c -o memory-layout
$ size memory-layout
text data bss dec hex filename
960 248 16 1224 4c8 memory-.

0S Bottom Line: Run Programs

Load instruction and data segments of executable file into memory
Create stack and heap

“Transfer control to program”

Provide services to program

While protecting OS and program

0S Bottom Line: Run Programs

Executable

Program Source

data

| compiler

instructions

foo.c a.out

Load &
Execute

PC:

OxFFF...
oS
stack =

()

3
heap <
data

instructions
0x000...
registers

Processor

FEtCh/DECOdE/EXECUte The Instruction Cycle

Processor
PC: '
I
v

Memory

Instruction fetch Instruction

Decode

Registers

A 4

Execute

data

What happens during program execution?

e Execution sequence:

Fetch Instruction at PC

Decode

Execute (possibly using registers)
Write results to registers/mem
PC = Next Instruction(PC)

Repeat

O O O O O O

What happens during program execution?

Inst237
Inst236

Inst5
Inst4

Inst3 PC
Inst2 PC
Inst| PC
InstO PC

Addr 0

Multiprogramming

Proc Proc
2 e o o n

ETu|

heap

Static Data
code

ETa|

heap

Static Data
code

How can we give the illusion of multiple processors?

e Assume a single processor. How do we provide the illusion of multiple processors?
o Multiplex in time!
e Eachvirtual “CPU” needs a structure to hold:
o Program Counter (PC), Stack Pointer (SP)
o Registers (Integer, Floating point, others...?)
e How switch from one virtual CPU to the next?
o Save PC, SP, and registers in current state block
o Load PC, SP, and registers from new state block
e What triggers switch?
o Timer, voluntary yield, /0, other things

A4

vCPU2 | vCPU3

Time ———y

vCPU2

The World Is Parallel

e Intel Skylake (2017)
o 28 Cores '
o Each core has two hyperthreads! {1
o 50: 54 Program Counters(PCs)
e Scheduling here means:
o Pick which core
o Pick which thread

ADPLL, FIVR

Power Delivery Subsys

5 types of Kernel Mode Transfer

e Syscall
o Process requests a system service, e.g., exit
o Like a function call, but “outside” the process
o Does not have the address of the system function to call
o Like a Remote Procedure Call (RPC) - for later
o Marshall the syscall id and args in registers and exec syscall
e Interrupt
o External asynchronous event triggers context switch
o eg. Timer, I/O device
o Independent of user process
e Trap or Exception
o Internal synchronous event in process triggers context switch
o e.g., Protection violation (segmentation fault), Divide by zero, ...

User/Kernel (Privileged) Mode

\ A)

| |
Limited HWV access Full HWV access

Need for Separate Kernel Stacks

e Kernel needs space to work
e Cannot put anything on the user stack (Why?)

e Two-stack model

running

main

User Stack

proci

proc2

%

N
/7

Kernel Stack

ready to run

main

proci

proc2

H

user CPU
state

waiting for I/0

main

proci

proc2

%

syscall

user CPU
state

syscall
handler

N

I/0 driver
top half

Before

User-level
Process

code:

foo () {
while{...) {
X=X+1;
y=y-2Z
}
}

stack:

Registers

SS: ESP

- CS:EIP

EFLAGS

other
registers:
EAX, EBX,

Kernel

code:

handler() {
pusha

Exception
Stack

During

User-level
Process

code:

foo () {
while(...) {
X=X+1;
y=y-2
}
}

stack:

Registers Kernel
SS: ESP code:
CS: EIP
EFLAGS handler() {

other pusha

registers:

EAX, EBYX, }

Exception
Stack
SS
ESP

EFLAGS

CS
EIP
error

Can a process create a process ?

Parent

. resumes

Child

Can a process create a process ?

e Yes! Unique identity of process is the “process ID”
(or PID)

o fork() system call creates a copy of current
process with a new PID

e Return value from fork(): integer
o When > 0:
Running in (original) Parent process
return value is pid of new child
When = 0:
Running in new Child process
When < O:
Error! Must handle somehow
o Running in original process
e State of original process duplicated in both Parent

and Child!

o Memory, File Descriptors (next topic), etc...

O O OO OO0

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

Create Process: forkl.c finclude <unistd.hs

#include <sys/types.h>

int main(int argc, char *argvl[])
{
pid t cpid, mypid;

pid t pid = getpid(); /* get current processes PID */
printf ("Parent pid: %d\n", pid);
cpid = fork();
if (cpid > 0) { /* Parent Process */
mypid = getpid();
printf (" [%d] parent of [%d]\n", mypid, cpid);
} else if (cpid == 0) { /* Child Process */
mypid = getpid();
printf (" [%d] child\n", mypid);
} else {
perror ("Fork failed");
exit (1) ;
}
exit (0);

Exec Process

int execv(const char *path, char *const argv]|]):

#include <unistd.h>
int main (void) {
char *binaryPath = "/bin/1ls";
char *args[] = {binaryPath, "-1h", "/home", NULL};

execv (binaryPath, args);

return 0;

pid = fork();

if (pid == 0)
exec(...);

else
wait{pid);

fork

o
I

UNIX Process Management

pid = fork();

if (pid == 0)
exec(...);

else
wait(pid);

exec

NV

pid = fork();

if (pid == Q)
exec{...);

else
wait{pid);

wait

NV

main () {

UNIX System Structure

Applications (the users)

User Mode

. shells and commands
Standard Libs compilers and interpreters

sxstem libraries

system-call interface to the kernel

- signals terminal file system CPU scheduling
Kernel Mode g) handling swapping block /O page replacement
& character /O system system demand paging

terminal drivers disk and tape drivers virtual memory

kernel interface to the hardware

Hard terminal controllers device controllers memory controllers
araware terminals disks and tapes physical memory

A Kind of Narrow Waist

Word Processing
Comepilers Web Browsers

Email

Web Servers

Databases Application / Service

Portable OS Library OS
User System Call
Interface
System
Portable OS Kernel
Software Platform support, Device Driver A\
Hardware x86 PowerPC ARM \
P

Ethernet (1Gbs/10Gbs) 802.11 a/g/n/ac SCSI Graphics Thunderbolt

UNIX Process Management

® DS aux | grep process name
® ps —-p process 1id
® ps j // list all process parent id

® Pstree // list tree view of processes

e 1s -la /proc/3956/

UNIX Process Management

#!/bin/sh

P=51

if [-z "S$P"]; then
read P

fi
cat /proc/"$P"/status | grep PPid

