
Introduction to
Process

Booting an Operating System Kernel

Memory Layout of C Programs

OS Bottom Line: Run Programs

● Load instruction and data segments of executable file into memory
● Create stack and heap
● “Transfer control to program”
● Provide services to program
● While protecting OS and program

OS Bottom Line: Run Programs

int main()
{ … ;
 }

ed
ito

r
Program Source

foo.c

Lo
ad

 &

Ex
ec

ut
e M

em
ory

PC:

Processor
registers

0x000…

0xFFF…

instructions

data

heap

stack

OS

co
m

pi
le

r

Executable

a.out

data

instructions

Fetch/Decode/Execute The Instruction Cycle

PC:

Instruction fetch

Registers

ALU

Execute

Memory

instruction

Decode decode

next

data

Processor

What happens during program execution?

● Execution sequence:
○ Fetch Instruction at PC
○ Decode
○ Execute (possibly using registers)
○ Write results to registers/mem
○ PC = Next Instruction(PC)
○ Repeat

What happens during program execution?

Fetch
Exec

R0
…

R31
F0
…
F30
PC

…
Data1
Data0
Inst237
Inst236

…
Inst5
Inst4
Inst3
Inst2
Inst1
Inst0

Addr 0

Addr 232-1

PC
PC
PC
PC

Multiprogramming

OS

Proc
1

Proc
2

Proc
n…

code
Static Data
heap

stack

code
Static Data
heap

stack

code
Static Data
heap

stack

How can we give the illusion of multiple processors?

● Assume a single processor. How do we provide the illusion of multiple processors?
○ Multiplex in time!

● Each virtual “CPU” needs a structure to hold:
○ Program Counter (PC), Stack Pointer (SP)
○ Registers (Integer, Floating point, others…?)

● How switch from one virtual CPU to the next?
○ Save PC, SP, and registers in current state block
○ Load PC, SP, and registers from new state block

● What triggers switch?
○ Timer, voluntary yield, I/O, other things

vCPU
3

vCPU
2

vCPU
1

Shared Memory
vCPU1 vCPU2 vCPU3 vCPU1 vCPU2

Time

The World Is Parallel

● Intel Skylake (2017)
○ 28 Cores
○ Each core has two hyperthreads!
○ So: 54 Program Counters(PCs)

● Scheduling here means:
○ Pick which core
○ Pick which thread

3 types of Kernel Mode Transfer

● Syscall
○ Process requests a system service, e.g., exit
○ Like a function call, but “outside” the process
○ Does not have the address of the system function to call
○ Like a Remote Procedure Call (RPC) – for later
○ Marshall the syscall id and args in registers and exec syscall

● Interrupt
○ External asynchronous event triggers context switch
○ eg. Timer, I/O device
○ Independent of user process

● Trap or Exception
○ Internal synchronous event in process triggers context switch
○ e.g., Protection violation (segmentation fault), Divide by zero, …

User/Kernel (Privileged) Mode

User Mode

Kernel Mode

Full HW accessLimited HW access

exec

syscall

exit
rtn

interrupt

rfi

exception

Need for Separate Kernel Stacks

● Kernel needs space to work
● Cannot put anything on the user stack (Why?)
● Two-stack model

Before

During

Can a process create a process ?

Can a process create a process ?

● Yes! Unique identity of process is the “process ID”
(or PID)

● fork() system call creates a copy of current
process with a new PID

● Return value from fork(): integer
○ When > 0:
○ Running in (original) Parent process
○ return value is pid of new child
○ When = 0:
○ Running in new Child process
○ When < 0:
○ Error! Must handle somehow
○ Running in original process

● State of original process duplicated in both Parent
and Child!
○ Memory, File Descriptors (next topic), etc…

Create Process: fork1.c

int main(int argc, char *argv[])
{
 pid_t cpid, mypid;

 pid_t pid = getpid(); /* get current processes PID */
 printf("Parent pid: %d\n", pid);
 cpid = fork();
 if (cpid > 0) { /* Parent Process */
 mypid = getpid();
 printf("[%d] parent of [%d]\n", mypid, cpid);
 } else if (cpid == 0) { /* Child Process */
 mypid = getpid();
 printf("[%d] child\n", mypid);
 } else {
 perror("Fork failed");
 exit(1);
 }
 exit(0);
}

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <sys/types.h>

Exec Process

int execv(const char *path, char *const argv[]);

#include <unistd.h>

int main(void) {
 char *binaryPath = "/bin/ls";
 char *args[] = {binaryPath, "-lh", "/home", NULL};

 execv(binaryPath, args);

 return 0;
}

UNIX Process Management

UNIX System Structure

User Mode

Kernel Mode

Hardware

Applications

Standard Libs

A Kind of Narrow Waist

Compilers

Web Servers

Web Browsers

Databases
Email

Word Processing

Portable OS Library
System Call

Interface
Portable OS Kernel

Platform support, Device Drivers

x86 ARMPowerPC

Ethernet (1Gbs/10Gbs) 802.11 a/g/n/ac SCSI ThunderboltGraphics
PCI

Hardware

Software

System

User
OS

Application / Service

UNIX Process Management

● ps aux | grep process_name

● ps -p process_id

● ps j // list all process_parent_id

● Pstree // list tree view of processes

● ls -la /proc/3956/

UNIX Process Management

#!/bin/sh
P=$1
if [-z "$P"]; then
 read P
fi
cat /proc/"$P"/status | grep PPid

