
Introduction to C
Programming

Section 8

Introduction

● Until now
○ We have seen strings in printf
○ Our old definition: string is a set of char between “”

printf("This is a string\n");

printf("This is %s\n", "a string\n");

● Strings:
○ An array of chars
○ Terminated by the null char '\0'

Strings in C

● Since strings are array

char str1[] = {'p','r','o','g','r','a','m', '\0'};
char str2[8] = “program”;
char str3[] = “program”;

'p' 'r' 'o' 'g' 'r' 'a' 'm' '\0'

String

● Initializing char array ...

○ char s[10] = "unix"; /* s[4] is '\0'; */

○ char s[] = "unix"; /* s has five elements */

Strings are Character Arrays

● Strings in C are simply arrays of characters
○ Example: char s [10];

● This is a ten (10) element array that can hold a
character string consisting of ≤ 9 characters

● This is because C does not know where the end of an
array is at run time
○ By convention, C uses a NULL character '\0' to terminate all

strings in its library functions
● For example:

char str [10] = {'u', 'n', 'I', 'x', '\0'};

● It’s the string terminator (not the size of the array) that
determines the length of the string

Strings

● Each character has an integer representation
a b c d e z…………

97 98 99 100 101 ………………………112

A B C D E Z…………

65 66 67 68 69 ……………………… 90

0 1 2 3 4 98765

48 49 50 51 52 53 54 55 56 57

\0
0

\n
10

Accessing Individual Characters

● The first element of any array in C is at index 0. The
second is at index 1, and so on ...
char s[10];
s[0] = 'h';
s[1] = 'i’;
s[2] = '!';
s[3] = '\0';

● This notation can be used in all kinds of statements
and expressions in C:
○ For example:

c = s[1];
if (s[0] == '-') …
switch (s[1]) ...

? ? ? ? ? ? 0\ ! i h
[9] [8] [7] [6] [5] [4] [3] [2] [1] [0] s

String Library

● Access to string library by
○ #include <string.h>

● Many functions to work with strings
○ Find the length of string
○ Compare strings
○ Copy strings
○ Search in strings

● Concatenating strings

Length of String

● strlen(str): Length of string

● From start to first occurrence of the null char

char str[] = "This is test";

char str1[10] = {'a', 'b', '\0', 'c', '\0'};

strlen(str) >>> 12

strlen(str1) >>> 2

Compare Strings

● str1 and str2 are compared as follows
○ Compare char by char from left to right until str1 and

str2 has same chars.
○ In the first different char
○ If(char of str1 < char of str2) > str1 < str2
○ If (both string finish) > str1 = str2

● strcmp(str1, str2):compare str1 and str2
○ If(str1 == str2) > return 0
○ If(str1 < str2) > return -1
○ If(str1 > str2) > return 1

Compare Strings

● strcmpi(str1, str2)
● Compares str1 and str2 similar to strcmp
● But ignores uppercase/lowercase

difference

char str1[]="ABC", str2[]="abC";

strcmpi(str1, str2) 🡪 0

strcpy

● Copying a string comes in the form:

char *strcpy (char * destination, char *
source);

● A copy of source is made at destination

○source should be NULL terminated
○destination should have enough room (its

length should be at least the size of source)

Copy Strings: Example

char str1[] = "Test String";

char str2[20];

strcpy(str2, str1);

printf("%s\n", str2); // test string

printf("%s\n", str1); // test string

strcat

● Concatenating two strings:

char * strcat (char * str1, char * str2);
○Appends a copy of str2 to the end of

str1

● Ensure that str1 has sufficient space for the concatenated string!

○Array index out of range will be the most
popular bug in your C programming career

Concatenate Strings: Example

char str1[] = "String";

char str2[20]= "Test ";

strcat(str2, str1);

printf("%s\n", str2); // test string

