ad
03
R

P
(B
ersity & Technology
|

]
UsT

Introduction to C
Programming

Section 8

Introduction

e Until now
o We have seen strings in printf
o Our old definition: string is a set of char between
printf ("This is a string\n");

(134

printf ("This is %s\n", "a string\n");

e Strings:
o An array of chars
o Terminated by the null char "\0"'

Strings in C

e Since strings are array

char strl[] - {'p','r',‘o','g','r‘,'a','m', 1\01};
char str2[8] = “program”;
char str3[] = “program”;

|p| VrV 'o' 'g' lrl 'a' lml '\0'

String

e Initializing char array ...

O char s[10] = "unix"; /* s[4]is "\O"; */

O chars[]="unix"; /*s has five elements */

Strings are Character Arrays

o Strings in C are simply arrays of characters

©)

o T
C

o |
d
@

Example: char s[10];

nis is a ten (10) element array that can hold a
naracter string consisting of < 9 characters

nis is because C does not know where the end of an
rray is at run time

B%/_con_/er)tion, C uses a NULL character "\0' to terminate all
strings in its library functions

o For example:
char str[10]={'u’,'n",'I','x', \O'};

o It's the string terminator (not the size of the array) that
etermines the length of the string

d

Strings

« Each character has an integer representation

97 98 99 100 101 ..o, 112

65 66 67 68 69cociiiii, 90

48 49 50 51 52 53 54 55 56 57

Accessing Individual Characters

o The first element of any array in Cis atindex 0. The
second is atindex 1, and so on ...

char s[10];

S;?;zlh'; 2 2 2 2 2 2 0 ! i h
S =|il;

S[2] = 1" 9 81 (71 [6] (5] [41 B3] [21 [1] [0] s
s[3] = "\O';

o This notation can be used in all kinds of statements
and expressions in C:
o For example:
c=s[1];
if (s[0] =="-") ...
switch (s[1]) ...

String Library

e Access to string library by
O #include <string.h>

e Many functions to work with strings
o Find the length of string
o Compare strings
o Copy strings
o Search in strings
e (Concatenating strings

Length of String

e strlen(str): Length of string

e From start to first occurrence of the null char

char str[] = "This 1is test";
char strl[10] = {'a', 'b', '\0', 'c', '\0'};
strlen(str) >>> 12

strlen(strl) >>> 2

Compare Strings

e str1 and str2 are compared as follows
o Compare char by char from left to right until str1 and
str2 has same chars.

o In the first different char
o If(char of str1 < char of str2) > str1 < str2
o If (both string finish) > str1 = str2

e strcmp (strl, str2) :compare str1 and str2
o If(str1 == str2) >return O
o If(str1 < str2) > return -1
o If(str1 > str2) > return 1

® strcmpi(strl, str2)

e Compares str1 and str2 similar to strcmp

e But ignores uppercase/lowercase
difference

char strl[]="ABC", str2[]="abC";

strcempi (strl, str2) 0O

strcpy

e Copying a string comes in the form:

char *strcpy (char * destination, char *
source);

e A copy of source is made at destination

osource should be NULL terminated

odestination should have enough room (its
length should be at least the size of source)

Copy Strings: Example

char strl[] = "Test String";
char str2[20];
strcpy(str2, strl);

printf ("%$s\n", str2); // test string

printf ("%$s\n", strl); // test string

strcat

e (Concatenating two strings:

char * strcat (char * str1, char * str2);

oAppends a copy of str2 to the end of
Str

e Ensure that str1 has sufficient space for the concatenated string!
oArray index out of range will be the most
popular bug in your C programming career

Concatenate Strings: Example

char strl[] = "String";

char str2[20]= "Test ";

strcat(str2, strl);

printf ("%$s\n", str2); // test string

