
Introduction to C
Programming

Section 9

Recall Variables

1 = 00000001

7 = 00000111

0

1

2

3

4

5

6

…

x1

x2

addressname Memory - content

int x1=1;

int x2=7;

Pointers

● When the value of a variable is used, the contents in the
memory are used
○ y=x; will read the contents in the 4 bytes of memory,

and then assign it to variable y
● &x can get the address of x (referencing operator &)
● The address can be passed to a function:

○ scanf("%d", &x);
● The address can also be stored in a variable ……

Pointer: Reference to Memory

● Pointer is a variable that
● Contains the address of another variable
● Pointer refers to an address
● Examples

int i;
int *pi;
i = 20;
pi = &i;

Pointers

● To declare a pointer variable

type * PointerName;

● For example:
int x;

int * p; //p is a int pointer

// char *p2;
p = &x; /* Initializing p */

* &
? 22F50 x
? 22F51
? 22F52
? 22F53
00 22F54 p
02 22F55
2F 22F56
50 22F57

…

Pointer: Declaration and Initialization

int i, *pi;

pi = &i;

float f;

float *pf = &f;

char c, *pc = &c;

Addresses and Pointers

int a, b;
int *c, *d;
a = 5;
c = &a;
d = &b;
*d = 9;
printf(…,c, *c,&c)
printf(…,a, b)

?

?

?

?

memory

0

1

2

3

4

a

b

c

addressname

c=1 *c=5 &c=3

a=5 b=9

5

1

d 2

9

Addresses and Pointers

● A pointer variable is a variable!
○ It is stored in memory somewhere and has an

address.
○ It is a string of bits (just like any other variable).
○ Pointers are 32 bits long on most systems.

Using Pointers

● You can use pointers to access the values of other
variables, i.e. the contents of the memory for other
variables

● To do this, use the * operator (dereferencing
operator)
○ Depending on different context, * has different meanings

