
Brief History of C Language
Section 1

 Machine Languages, Assembly Languages and High-Level Languages

● Machine languages generally consist of strings of numbers (ultimately
reduced to 1s and 0s) that instruct computers to perform their most
elementary operations one at a time.

● Example: 00010101
11010001
01001100

● Each of the lines above corresponds to a specific task to be done by
the processor

● Such languages are cumbersome for humans.
● Instead of using the strings of numbers that computers could

directly understand, programmers began using English-like
abbreviations to represent elementary operations.

● These abbreviations formed the basis of assembly languages.

 Machine Languages, Assembly Languages and High-Level Languages

● Enables machine code to be represented in words and numbers
● Translator programs called assemblers were developed to convert

early assembly-language programs to machine language at
computer speeds.

● Example of a program in assembly language:
LOAD A, 9999
LOAD B, 8282
SUB B, A
MOV C, A

● Although such code is clearer to humans, it’s incomprehensible to
computers until translated to machine language.

● Processor and Architecture dependent – not portable

 Machine Languages, Assembly Languages and High-Level Languages

● Computer usage increased rapidly with the advent of assembly
languages, but programmers still had to use many instructions
to accomplish even the simplest tasks.

● To speed the programming process, high-level languages were
developed in which single statements could be written to
accomplish substantial tasks.

● Translator programs called compilers convert high-level
language programs into machine language.

● Processor independent - the same code can be run on
different processors.

 Machine Languages, Assembly Languages and High-Level Languages

● High-level languages allow programmers to write
instructions that look almost like everyday English and
contain commonly used mathematical notations.

● Examples: Basic, Fortran, Pascal, C, C++ and Java
● Interpreter programs were developed to execute high-level language programs directly

(without the delay of compilation), although slower than compiled programs run.

 History of C

● BCPL ,1967, Martin Richards
○ as a language for writing operating-systems software and compiler

● B, 1969, Ken Thomson
○ based on BCPL

● C, 1972, Dennis Ritchie
○ based on BCPL and B
○ C initially became widely known as the development language of the

UNIX operating system.

 C Standard Library

● C programs consist of modules or pieces called functions.
● You can program all the functions you need to form a C

program, but most C programmers take advantage of a rich
collection of existing functions called the C Standard Library.

 C Standard Library

● Avoid reinventing the wheel.
● Instead, use existing pieces—this is called software reusability, and it’s a key to the

field of object-oriented programming, as you’ll see when you study C++.
● When programming in C you’ll typically use the following building blocks:

○ C Standard Library functions

○ Functions you create yourself

○ Functions other people have created and made available to you

 C++

● C++ was developed by Bjarne Stroustrup at Bell Lab.
○ It has its roots in C, providing a number of features that

“spruce up” the C language.
○ provides capabilities for object-oriented programming.
○ Objects are essentially reusable software components that

model items in the real world.

 Typical C Program Development Environment

● C systems generally consist of several parts:
○ a program development environment
○ the language
○ the C Standard Library.

● C programs typically go through six phases to be
executed:
○ edit, preprocess, compile, link, load and execute.

 Typical C Program Development Environment

● Phase 1 consists of editing a file. This is accomplished
with an editor program.

● You type a C program with the editor, make corrections if necessary, then store the
program on a secondary storage device such as a hard disk.

● C program file names should end with the .c extension.
● gedit sampleProgram.c

 Typical C Program Development Environment

● Editing a file with an editor program

 Typical C Program Development Environment

● In Phase 2, the you give the command to compile the program.
● The compiler translates the C program into machine language-code (also referred to as

object code).
● gcc sampleProgram.c -o sampleProgram

 Typical C Program Development Environment

● The next phase is called loading.
● Before a program can be executed, the program must first be placed in memory.

○ This is done by the loader, which takes the executable image from disk and transfers it to memory.

○ Additional components from shared libraries that support the program are also loaded.

● Finally, the computer, under the control of its CPU, executes the program one
instruction at a time.

 Typical C Program Development Environment

● Programs do not always work on the first try.
● Each of the preceding phases can fail because of various errors that we’ll discuss.
● For example, an executing program might attempt to divide by zero.
● This would cause the computer to display an error message.

