
Introduction to C
Programming

Section 10

Introduction

● Our variables until now
○ Single variable

int i, char c, float f
● Set of same type elements: Array

int a[10], char c[20]

● If data are not same type, but related? Example:
Information about students
○ Student Name
○ Student Family Name
○ Student Number
○ Student Grade

Structure Basics

● A structure is a collection of data values, called
data members, that form a single unit.

● Unlike arrays, the data members can be of
different types.

struct: version 1

● Set of related variables
○ Each variable in struct has its own type

struct in C (version 1)

struct {

<variable declaration>

} <identifier list>;

struct (version 1): Example

struct{
char st_name[20];
char st_fam_name[20];
int id; int grade;

} st1;

● We declare a variable st1
● Type of st1 is struct
● id is a member of the struct
● grade is a member of the struct

struct: Version 2

struct in C (version 2)

struct <tag> {

<variable declaration>

};

struct <tag> <identifiers>;

struct (version 2): Example

struct std_info{

char st_name[20];
char st_fam_name[20];
int id; int grade;

};

struct std_info st1, st2, st3;

● We define a struct with tag std_info
○ We don’t allocate memory, it is just definition

● We declare variables st1, st2, st3 from std_info

Pointer to struct: Definition

● A variable of struct type is a variable
● It has address, we can have pointer to it

struct std{
 int id;
 int grade;

};
struct std st1;

struct std *ps;

ps = &st1;

Pointer to struct: Usage (Version 1)

● We can use *pointer method
● *ps means the content of the address that
● ps refers to there > it is struct

● (*ps).id is the member of struct that ps
refers to it

● (*ps).grade is the member of struct
that ps refers to it

Pointer to struct: Usage (Version 2)

● We can use “->" method
struct std{

int id;

int grade;

};
struct std st1, *ps;
ps = &st1;
int y = ps->id; // (*ps).id
int z = ps->grade; // (*ps).grade

