ad
JIE
o

. Y
. A d y
iversity of Science & Technology
IUST

us

Brief History of C Language

Section 1

Machine Languages, Assembly Languages and High-Level Languages

» Machine languages generally consist of strings of numbers (ultimately
reduced to 1s and 0s) that instruct computers to perform their most
clementary operations one at a time.

o Example: 00010101
11010001
01001100

« Each of the lines above corresponds to a specific task to be done by
the processor

« Such languages are cumbersome for humans.

 Instead of using the strings of numbers that computers could
directly understand, programmers began using English-like
abbreviations to represent elementary operations.

« These abbreviations formed the basis of assembly languages.

Machine Languages, Assembly Languages and High-Level Languages

» Enables machine code to be represented in words and numbers

» Translator programs called assemblers were developed to convert
early assembly-language programs to machine language at
computer speeds.

« Example of a program in assembly language:
LOAD A, 9999
LOAD B, 8282
SUB B, A
MOV C, A

o Although such code 1s clearer to humans, 1t’s incomprehensible to
computers until translated to machine language.

» Processor and Architecture dependent — not portable

Machine Languages, Assembly Languages and High-Level Languages

« Computer usage increased rapidly with the advent of assembly
languages, but programmers still had to use many instructions
to accomplish even the simplest tasks.

» To speed the programming process, high-level languages were
developed in which single statements could be written to
accomplish substantial tasks.

 Translator programs called compilers convert high-level
language programs into machine language.

o Processor independent - the same code can be run on
different processors.

Machine Languages, Assembly Languages and High-Level Languages

» High-level languages allow programmers to write
instructions that look almost like everyday English and

contain commonly used mathematical notations.

e Examples: Basic, Fortran, Pascal, C, C++ and Java

e Interpreter programs were developed to execute high-level language programs directly
(without the delay of compilation), although slower than compiled programs run.

History of C

« BCPL ,1967, Martin Richards
o as a language for writing operating-systems software and compiler

o B, 1969, Ken Thomson
o based on BCPL

o C, 1972, Dennis Ritchie
o based on BCPL and B

o C initially became widely known as the development language of the
UNIX operating system.

C Standard Library

o C programs consist of modules or pieces called functions.

e You can program all the functions you need to form a C
program, but most C programmers take advantage of a rich
collection of existing functions called the C Standard Library.

C Standard Library

e Avoid reinventing the wheel.

e Instead, use existing pieces—this is called software reusability, and it’s a key to the
field of object-oriented programming, as you’ll see when you study C++.

® When programming in C you’ll typically use the following building blocks:

O C Standard Library functions

O Functions you create yourself

O Functions other people have created and made available to you

C++

o C++ was developed by Bjarne Stroustrup at Bell Lab.

o It has its roots in C, providing a number of features that
“spruce up” the C language.

o provides capabilities for object-oriented programming.

o Objects are essentially reusable software components that
model items 1n the real world.

Typical C Program Development Environment

o C systems generally consist of several parts:
o a program development environment
o the language
o the C Standard Library.
o C programs typically go through six phases to be
executed:

o edit, preprocess, compile, link, load and execute.

Typical C Program Development Environment

Phase 1 consists of editing a file. This 1s accomplished
with an editor program.

You type a C program with the editor, make corrections if necessary, then store the
program on a secondary storage device such as a hard disk.

C program file names should end with the . C extension.

gedit sampleProgram.c

Typical C Program Development Environment

» Editing a file with an editor program

vahid@vahid-G551JW: ~

File Edit View Search Terminal Help
e Edit Selection View Go Debug Terminal Help

hello.c X

id main()

Bj { ello.c
15

printf("Hello students \n");

il

/O } Welcome
X ello.c

2_9 v OS_CLASS

I

Typical C Program Development Environment

e In Phase 2, the you give the command to compile the program.

e The compiler translates the C program into machine language-code (also referred to as
object code).

® gcc sampleProgram.c -0 sampleProgram

g

Editor

.

Preprocessor

Compiler

Phase I:
[Programmer creates program

in the editor and stores it on
disk.

Phase 2:
¢ Preprocessor program
processes the code.

) Phase 3:

, Compiler creates
object code and stores
it on disk.

Phase 4:

Linker links the object

¢ code with the libraries,
creates an executable file and

stores it on disk.

Fig. 1.1 | Typical C development environment. (Part | of 2

)

Typical C Program Development Environment

e The next phase is called loading.

e Before a program can be executed, the program must first be placed in memory.

O This is done by the loader, which takes the executable image from disk and transfers it to memory.

O Additional components from shared libraries that support the program are also loaded.

e Finally, the computer, under the control of its CPU, executes the program one
instruction at a time.

Primary)

Loader

Primary)
Memory

CrU

Phase 5:
> Loader puts program
in memory.

Phase 6:

CPU takes each
instruction and

> executes it, possibly
storing new data
values as the program
executes.

Fig. 1.1 | Typical C development environment. (Part 2 of 2.)

Typical C Program Development Environment

Programs do not always work on the first try.
Each of the preceding phases can fail because of various errors that we’ll discuss.

For example, an executing program might attempt to divide by zero.

This would cause the computer to display an error message.

