
Introduction to C
Programming

Section 2

OBJECTIVES

▪ Simple C program
● Variables
● Data types
● Arithmetic in C
● Operations

A Simple C Program

● Examples:

// int is return data type
// main is entrance function
int main()
{
 statement 1;
 statement 1;
 // ….
 return 0;
}

C Program

� Examples:
◦ Header file
◦ Main function
◦ Variables
◦ Input and output
◦ Process

#include <stdio.h> // header file (preprocessor)
// calculating sum of two user input variables
int main()
{
 /* variable definition */
 int a;
 int b;
 int result = 0;
 // get first variables form user
 printf("Enter first number:\n");
 scanf("%d", &a);
 // get scoend variables form user
 printf("Enter scoend number:\n");
 scanf("%d", &b);
 // sum of input variables
 result = a + b;
 printf("%d + %d = %d\n", a, b, result);
 system("Pause");
 return 0;
}

* VIM default coloring for C

A Simple C Program: Printing a Line of Text

A Simple C Program: Printing a Line of Text

● When encountering a backslash in a string, the compiler looks ahead at the next
character and combines it with the backslash to form an escape sequence.

● The escape sequence \n means newline.

A Simple C Program: Printing a Line of Text

● Line 10
■ return 0; /* indicate that program ended successfully */

● is included at the end of every main function.
● The keyword return is one of several means we’ll use to exit a function.
● When the return statement is used at the end of main as shown here, the value 0

indicates that the program has terminated successfully.

Variables

● Have the same meaning as variables in algebra
○ Single alphabetic character
○ Each variable needs an identifier that distinguishes it from the others

■ a = 5
■ x = a + b

● valid identifier in C may be given representations containing
multiple characters
○ A-Z, a-z, 0-9, and _ (underscore character)
○ First character must be a letter or underscore (no, _no 9no)
○ Usually only the first 32 characters are significant
○ There can be no embedded blanks (student no)
○ Identifiers are case sensitive (area, Area, AREA, ArEa)
○ Keywords cannot be used as identifiers

Reserved Words (Keywords) in C

auto break int long
case char register return

const continue short signed

default do sizeof static

double else struct switch

enum extern typedef union
float for unsigned void

goto if volatile while

Variable declaration

● Before using a variable, you must declare it
● All variables must be defined with a name and a data type.
▪ Data_Type Identifier;

■ int width; // width of rectangle
■ float area; // result of calculating area stored in it
■ char separator; // word separator
▪ Data_Type Identifier = Initial_Value;

■ int width = 10; // width of rectangle
■ float area = 255; // result of calculating area stored in it
■ char seperator = ‘,’; // word separator
▪ Data_Type Identifier, Identifier, Identifier;

• int width, length, temporary;
• float radius, area = 0;

Data types

● Minimal set of basic data types

○ primitive data types

■ int

■ float

■ double

■ char

■ Void

● The size and range of these data types may vary among processor types
and compilers

 Another Simple C Program: Adding Two Integers

Type Storage size Value range format specifier

char 1 byte -128 to 127 or 0 to 255 %c

unsigned char 1 byte 0 to 255 %c

signed char 1 byte -128 to 127 %c

int 2 or 4 bytes -32,768 to 32,767 or -2,147,483,648 to 2,147,483,647 d%

unsigned int 2 or 4 bytes 0 to 65,535 or 0 to 4,294,967,295 %u

short 2 bytes -32,768 to 32,767 %hd

unsigned short 2 bytes 0 to 65,535 %hu

long 8 bytes -9223372036854775808 to 9223372036854775807 %ld

unsigned long 8 bytes 0 to 18446744073709551615 %lu

float 4 %f

double 8 %lf

long double 12 %lf

Printf / Scanf

● prints the literal Enter first integer on the screen and
positions the cursor to the beginning of the next line.
• printf("Enter first integer\n"); /* prompt */

● This message is called a prompt because it tells the user to
take a specific action.

● The scanf function reads from the standard input, which is
usually the keyboard.

■ scanf("%d", &integer1); /* read an integer */

● uses scanf to obtain a value from the user.

Printf / Scanf

● This scanf has two arguments, "%d" and &integer1.
● The first argument, the format control string, indicates the

type of data that should be input by the user.
● The %d conversion specifier indicates that the data should be

an integer (the letter d stands for “decimal integer”).
● The second argument of scanf begins with an ampersand

(&)—called the address operator in C—followed by the
variable name. The ampersand, when combined with the
variable name, tells scanf the location (or address) in memory
at which the variable integer1 is stored.

Arithmetic in C

● The C arithmetic operators are summarized in Fig. 2.9.

Operators

● Arithmetic Operators

○ unary operators

■ operators that require only one operand

○ binary operators

■ operators that require two operands

● Equality and Relational Operators
● Logical Operators
● Bitwise Operators
● Assignment Operators
● Conditional Operator

Width * High

Operator

Operand

Arithmetic Operators

● Unary Operator

C operation Operator Expression Explanation

Positive + a = +3;

Negative - b = -4;

Increment ++ i++; Equivalent to i = i + 1

Decrement - - i - -; Equivalent to i = i - 1

PRE / POST Increment

● Consider this example:

● But if we have:

int width = 9;
printf("%d\n", width++);
printf("%d\n", width);

int width = 9;
printf("%d\n", ++width);
printf("%d\n", width);

PRE / POST Increment

● Consider this example:

● But if we have:

int width = 9;
printf("%d\n", width++);
printf("%d\n", width);

int width = 9;
printf("%d\n", ++width);
printf("%d\n", width);

int width = 9;
printf("%d\n", width);
width++;
printf("%d\n", width);

int width = 9;
width++;
printf("%d\n", width);
printf("%d\n", width);

PRE / POST Increment

● Consider this example:

● But if we have:

9
10

int width = 9;
printf("%d\n", width);
width++;
printf("%d\n", width);

10
10

int width = 9;
width++;
printf("%d\n", width);
printf("%d\n", width);

int width = 9;
printf("%d\n", width++);
printf("%d\n", width);

int width = 9;
printf("%d\n", ++width);
printf("%d\n", width);

PRE / POST Increment

int R = 10;
int count = 10;

++ Or -- Statement Equivalent Statements R count

R = count++;
R = count;
count = count + 1; 10 11

R = ++count;
count = count + 1;
R = count; 11 11

R = count--;
R = count;
count = count – 1; 10 9

R = --count;
count = count – 1;
R = count; 9 9

Arithmetic Operators

● Binary Operators

C operation Operator Expression
Addition + b = a + 3;
Subtraction - b = a – 4;
Multiplication * b = a * 3;
Division / b = a / c;
Modulus (integer) % b = a % c;

Division

● The division of variables of type integer will always produce a variable of
type integer as the result

● Example
 int a = 7, b;
 float z;
 b = a / 2;
 z = a / 2.0;
 printf("b = %d, z = %f\n", b, z);

b = 3, z = 3.500000

Since b is declared as an
integer, the result of a/2 is 3, not
3.5

Modulus

● You could only use modulus (%) operation on integer variables (int, long,
char)
� z = a % 2.0; // error

� z = a % 0; // error

● Example
int a = 7, b, c;
b = a % 2;
c = a / 2;
printf("b = %d\n", b);
printf("c = %d\n", c);

Modulus will result in
the remainder of a/2.

- a/2

a%2

integral

remainder

7 2
6 3
1

Equality and Relational Operators

● Equality Operators:

● Relational Operators:

Operator Example Meaning

== x == y x is equal to y

!= x != y x is not equal to y

 Operator Example Meaning
> x > y x is greater than y

< x < y x is less than y

>= x >= y x is greater than or equal to y

<= x <= y x is less than or equal to y

Bitwise Operators

Operator Name Description

& AND Result is 1 if both operand bits are 1

| OR Result is 1 if either operand bit is 1

^ XOR Result is 1 if operand bits are different

~
Not (Ones

Complement)
Each bit is reversed

<< Left Shift Multiply by 2

>> Right Shift Divide by 2

Logical Operators

● Logical operators are useful when we want to test multiple conditions

▪ AND

▪ OR

▪ NOT

&& - Logical AND

● All the conditions must be true for the whole expression to be true

▪ Example: if (a == 1 && b == 2 && c == 3)

■ means that the if statement is only true when a == 1 and b == 2 and c == 3

e1 e2 Result = e1 && e2

false false false
false true false
true false false
true true true

e1 e2 Result = e1 && e2

0 0 0
0 1 0
1 0 0
1 1 1

|| - Logical OR

● The truth of one condition is enough to make the whole expression true
● Example: if (a == 1 || b == 2|| c == 3)

▪ means the if statement is true when

either one of a, b or c has the right value

e1 e2 Result = e1 || e2

false false false
false true true
true false true
true true true

e1 e2 Result = e1 || e2

0 0 0
0 1 1
1 0 1
1 1 1

! - Logical NOT

● Reverse the meaning of a condition
● Example: if (!(radius > 90))

▪ Means if radius not bigger than 90.

e1 Result = !e1

false true

false true

true false

true false

e1 Result = !e1

0 1
0 1
1 0
1 0

Conditional Operator

● The conditional operator (?:) is used to simplify an
if/else statement
▪ Condition ? Expression1 : Expression2;

● The statement above is equivalent to:
if (Condition)
 Expression1;
else
 Expression2;

● Which are more readable?

Conditional Operator

● Example:

if/else statement:

 if (total > 12)
 grade = ‘P’;
 else
 grade = ‘F’;

conditional statement:

(total > 12) ? grade = ‘P’: grade = ‘F’;

OR

grade =(total > 12) ? ‘P’: ‘F’;

